Selasa, 14 Juni 2011

Gerak Melingkar

Gerak Melingkar


Gerak Melingkar adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalumembelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran.



Besaran gerak melingkar


Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah θω dan α atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan rv dan α.

Besaran gerak lurus dan melingkar
Gerak lurusGerak melingkar
BesaranSatuan (SI)BesaranSatuan (SI)
poisisi  msudut θrad
kecepatan v m/skecepatan sudut ω rad/s
percepatan α m/s2percepatan sudut α rad/s2
--perioda Rs
--radius Tm



Turunan dan integral

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.

Gerak lurus berubah beraturan

Gerak lurus berubah beraturan


Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang ditempuh tidak lagi linier melainkan kuadratik.
v = vo + a.t
s = vo.t + 1/2 at2
dengan arti dan satuan dalam SI:
  • v0 = kecepatan mula-mula (m/s)
  • a = percepatan (m/s2)
  • t = waktu (s)
  • s = Jarak tempuh/perpindahan (m)


Suatu benda dikatakan melakukan gerak lurus berubah beraturan (GLBB) jika percepatannya selalu konstan. Percepatan merupakan besaran vektor (besaran yang mempunyai besar dan arah). Percepatan konstan berarti besar dan arah percepatan selalu konstan setiap saat. Walaupun besar percepatan suatu benda selalu konstan tetapi jika arah percepatan selalu berubah maka percepatan benda tidak konstan. Demikian juga sebaliknya jika arah percepatan suatu benda selalu konstan tetapi besar percepatan selalu berubah maka percepatan benda tidak konstan.
Karena arah percepatan benda selalu konstan maka benda pasti bergerak pada lintasan lurus. Arah percepatan konstan = arah kecepatan konstan = arah gerakan benda konstan = arah gerakan benda tidak berubah = benda bergerak lurus.Besar percepatan konstan bisa berarti kelajuan bertambah secara konstan atau kelajuan berkurang secara konstan. Ketika kelajuan benda berkurang secara konstan, kadang kita menyebutnya sebagai perlambatan konstan. Untuk gerakan satu dimensi (gerakan pada lintasan lurus), kata percepatan digunakan ketika arah kecepatan = arah percepatan, sedangkan kata perlambatan digunakan ketika arah kecepatan dan percepatan berlawanan.
Contoh 1 : Besar percepatan konstan (kelajuan benda bertambah secara konstan)

Misalnya mula-mula mobil diam. Setelah 1 detik, mobil bergerak dengan kelajuan 2 m/s. Setelah 2 detik mobil bergerak dengan kelajuan 4 m/s. Setelah 3 detik mobil bergerak dengan kelajuan 6 m/s. Setelah 4 detik mobil bergerak dengan kelajuan 8 m/s. Dan seterusnya… Tampak bahwa setiap detik kelajuan mobil bertambah 2 m/s. Kita bisa mengatakan bahwa mobil mengalami percepatan konstan sebesar 2 m/s per sekon = 2 m/s2.
Contoh 2 : Besar perlambatan konstan (kelajuan benda berkurang secara konstan)


Misalnya mula-mula benda bergerak dengan kelajuan 10 km/jam. Setelah 1 detik, benda bergerak dengan kelajuan 8 km/jam. Setelah 2 detik benda bergerak dengan kelajuan 6 km/jam. Setelah 3 detik benda bergerak dengan kelajuan 4 km/jam. Setelah 4 detik benda bergerak dengan kelajuan 2 km/jam. Setelah 5 detik benda berhenti. Tampak bahwa setiap detik kelajuan benda berkurang 2 km/jam. Kita bisa mengatakan bahwa benda mengalami perlambatan konstan sebesar 2 km/jam per sekon.
Perhatikan bahwa ketika dikatakan percepatan, maka yang dimaksudkan adalah percepatan sesaat. Demikian juga sebaliknya, ketika dikatakan percepatan sesaat, maka yang dimaksudkan adalah percepatan. Nah, dalam gerak lurus berubah beraturan (GLBB), percepatan benda selalu konstan setiap saat, karenanya percepatan benda sama dengan percepatan rata-ratanya. Jadi besar percepatan = besar percepatan rata-rata. Demikian juga, arah percepatan = arah percepatan rata-rata.
Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan).
Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)
Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis.  Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….
Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.
Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.
Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan alias rumus percepatan rata-rata, di mana


t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0 benda belum bergerak maka kita bisa mengatakan t0(waktu awal) = 0. Nah sekarang persamaan berubah menjadi :
Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi

Ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Tidak usah dihafal, pahami saja cara penurunannya dan sering-sering latihan soal .
Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.
Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rata


Untuk mencari nilai x, persamaan di atas kita tulis ulang menjadi :
Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir :
Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :

Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan 2 dapat ditulis menjadi
x = vot + ½ at2
Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui. Kita tulis lagi persamaan a :


Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :
Persamaan di atas tidak berlaku jika percepatan tidak konstan.

Gerak lurus beraturan

Gerak lurus beraturan

Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.
s = v.t
dengan arti dan satuan dalam SI:
  • s = jarak tempuh (m)
  • v = kecepatan (m/s)
  • t = waktu (s)

Suatu benda dikatakan melakukan gerak lurus beraturan jika kecepatannya selalu konstan. Kecepatan konstan artinya besar kecepatan alias kelajuan dan arah kecepatan selalu konstan. Karena besar kecepatan alias kelajuan dan arah kecepatan selalu konstan maka bisa dikatakan bahwa benda bergerak pada lintasan lurus dengan kelajuan konstan.
Misalnya sebuah mobil bergerak lurus ke arah timur dengan kelajuan konstan 10 m/s. Ini berarti mobil bergerak lurus ke arah timur sejauh 10 meter setiap sekon. Karena kelajuannya konstan maka setelah 2 sekon, mobil bergerak lurus ke arah timur sejauh 20 meter, setelah 3 sekon mobil bergerak lurus ke arah timur sejauh 30 meter… dan seterusnya… . Arah kecepatan mobil = arah perpindahan mobil = arah gerak mobil.
Perhatikan bahwa ketika dikatakan kecepatan, maka yang dimaksudkan adalahkecepatan sesaat. Demikian juga sebaliknya, ketika dikatakan kecepatan sesaat, maka yang dimaksudkan adalah kecepatan.
Dalam gerak lurus beraturan (GLB) kecepatan benda selalu konstan. Kecepatan konstan berarti besar kecepatan (besar kecepatan = kelajuan) dan arah kecepatan selalu konstan.
Grafik Kecepatan terhadap Waktu (v-t)
                                                                               
Berdasarkan grafik di atas, tampak bahwa besar kecepatan bernilai tetap pada tiap satuan waktu. Besar kecepatan tetap ditandai oleh garis lurus, berawal dari t = 0 hingga t akhir.
Contoh : perhatikan grafik kecepatan terhadap waktu (v-t) di bawah ini

Besar kecepatan benda pada grafik di atas adalah 3 m/s. 1, 2, 3 dstnya adalah waktu tempuh (satuannya detik). Amati bahwa walaupun waktu berubah dari 1 detik sampai 5, besar kecepatan benda selalu sama (ditandai oleh garis lurus).
Bagaimana kita mengetahui besar perpindahan benda melalui grafik di atas ? luas daerah yang diarsir pada grafik di atas sama dengan besar perpindahan yang ditempuh benda. Jadi, untuk mengetahui besarnya perpindahan, hitung saja luas daerah yang diarsir. Tentu saja satuan perpindahan adalah satuan panjang, bukan satuan luas.
Dari grafik di atas, v = 5 m/s, sedangkan t = 3 s. Dengan demikian, besar perpindahan yang ditempuh benda = (5 m/s x 3 s) = 15 m. Cara lain menghitung besar perpindahan  adalah menggunakan persamaan GLB. s = v t= 5 m/s x 3 s = 15 m.
Persamaan GLB yang kita gunakan untuk menghitung besar perpindahan di atas berlaku jika gerakan benda memenuhi grafik tersebut. Pada grafik terlihat bahwa pada saat t = 0 s, maka v = 0. Artinya, pada mulanya benda diam, baru kemudian bergerak dengan kecepatan sebesar 5 m/s. Padahal dapat saja terjadi bahwa saat awal kita amati benda sudah dalam keadaan bergerak, sehingga benda telah memiliki posisi awal s0. Untuk itu lebih memahami hal ini, pelajari grafik di bawah ini.
Grafik Perpindahan terhadap Waktu (x-t)
Grafik posisi terhadap waktu, di mana posisi awal x0 berhimpit dengan titik acuan nol.
                                                                             
Makna grafik di atas adalah bahwa besar kecepatan selalu tetap. Anda jangan bingung dengan kemiringan garis yang mewakili kecepatan. Makin besar nilai x, makin besar juga nilai t sehingga hasil perbandingan x dan y selalu sama.

Kinematika Gerak Lurus

Kinematika Gerak Lurus


Kinematika adalah ilmu yang membahas tentang gerak tanpa meninjau penyebab terjadinjya gerak. Misalnya setiap Hari kita berangkat dari rumah ke tempat kerja atau ke sekolah, tanpa kita sadari kita telah melakukan pergerakan atau perpindahan kedudukan dari rumah ke kantor atau sekolah. Hal yang demikian dikatakan kita melakukan perpindahan/bergerak.
Gerak lurus adalah gerak suatu obyek yang lintasannya berupa garis lurus. Dapat pula jenis gerak ini disebut sebagai suatu translasi beraturan. Pada rentang waktu yang sama terjadi perpindahan yang besarnya sama.

sistem koordinat cartesius dua dimensi

sistem koordinat cartesius dua dimensi


Sistem koordinat Kartesius dalam dua dimensi umumnya didefinisikan dengan dua sumbu yang saling bertegak lurus antar satu dengan yang lain, yang keduanya terletak pada satu bidang (bidang xy). Sumbu horizontal diberi label x, dan sumbu vertikal diberi label y. Pada sistem koordinat tiga dimensi, ditambahkan sumbu yang lain yang sering diberi label z. Sumbu-sumbu tersebut ortogonal antar satu dengan yang lain. (Satu sumbu dengan sumbu lain bertegak lurus.)
Titik pertemuan antara kedua sumbu, titik asal, umumnya diberi label 0. Setiap sumbu juga mempunyai besaran panjang unit, dan setiap panjang tersebut diberi tanda dan ini membentuk semacam grid. Untuk mendeskripsikan suatu titik tertentu dalam sistem koordinat dua dimensi, nilai x ditulis (absis), lalu diikuti dengan nilai y (ordinat). Dengan demikian, format yang dipakai selalu (x,y) dan urutannya tidak dibalik-balik.

Momentum Linier dan Anguler

Momentum Linier dan Anguler


Dalam fisikamomentum adalah besaran yang berhubungan dengan kecepatan dan massa suatu benda.


MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.


\mathbf{P}= m \mathbf{v}\,\!


P= momentum (kg m/s)
m= massa (kg)
v= kecepatan (m/s)


Massa merupakan besaran skalar, sedangkan kecepatan merupakan besaran vektor. Perkalian antara besaran skalar dengan besaran vektor akan menghasilkan besaran vektor. Jadi, momentum merupakan besaran vektor dengan arah p = arah v. Momentum sebuah partikel dapat dipandang sebagai ukuran kesulitan untuk mendiamkan benda. Sebagai contoh, sebuah truk berat mempunyai momentum yang lebih besar dibandingkan mobil yang ringan yang bergerak dengan kelajuan yang sama. Gaya yang lebih besar dibutuhkan untuk menghentikan truk tersebut dibandingkan dengan mobil yang ringan dalam waktu tertentu. 



MOMENTUM ANGULER (L)
Jika momentum linear adalah momentum yang dimiliki oleh benda-benda yang bergerak pada lintasan lurus, maka momentum sudut merupakan momentum yang dimiliki oleh benda-benda yang melakukan gerak rotasi. Dikatakan sudut, karena ketika melakukan gerak rotasi, setiap benda mengitari sudut tertentu. Dalam hal ini, benda berputar terhadap poros alias sumbu rotasi.


MOMENTUM ANGULER adalah hasil kali momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.
L = m v R = m w R2
L = p R



L= momentum sudut (kg m2/s)
m= massa (kg)
v= kecepatan (m/s)
R= jari-jari (m)
w= kecepatan sudut (rad/s)
p= momentum linier (kg m/s)
Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.

Momen Inersia

Momen Inersia


Pada gerak rotasi ini, dikenalkan besaran baru lagi yang dinamakan momen inersia. Inersia berarti lembam atau mempertahankan diri. Momen inersia berarti besaran yang nilainya tetap pada suatu gerak rotasi. Besaran ini analog dengan massa pada gerak translasi atau lurus.
Besarnya momen inersia sebuah partikel yang berotasi dengan jari-jari R seperti pada Gambar :Gerak Rotasi
didefinisikan sebagai hasil kali massa dengan kuadrat jari-jarinya. I = m R2. Untuk sistem partikel atau benda tegar memenuhi hubungan berikut.Benda Tegar
k adalah nilai konstanta inersia yang besarnya tergantung pada suhu dan bentuk bendanya.